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Abstract

For stegoschemes arising from error correcting codes, embedding de-
pends on a decoding map for the corresponding code. As decoding maps
are usually not complete, embedding can fail. We propose a method
to ensure or increase the probability of embedding success for these
stegoschemes. This method is based on puncturing codes. We show how
the use of punctured codes may also increase the embedding efficiency of
the obtained stegoschemes.

1 Introduction

Steganography is the art of transmitting information in secret, so that even the
existence of communication is hidden. It is realized by embedding the messages
to be protected into innocuous cover objects such as digital images. In order
to minimize the possibility of being detected by third parties, the number of
embedding changes in the cover must be small enough. Consequently, to obtain
a high payload, steganographers should design stegosystems able to embed as
much information as possible per cover change. In other words, we seek for
embedding methods giving high embedding efficiency.

Given a cover image and a secret message, we first select the placement
and intensity of allowed embedding changes in the cover. This is done by
means of a selection rule. After this step the cover is transformed into a finite
sequence x1, . . . , xn of symbols from an alphabet A (usually A = F2). We refer
to this sequence as the cover vector x = (x1, . . . , xn). The secret message will
be also a vector m = (m1, . . . ,mr) ∈ Ar. The algorithms used for embedding
the information m into x and later recovering m from Emb(x,m))form the
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stegoscheme associated to the stegosystem.

Crandall first noted that error correcting codes can be used to construct
stegoschemes of high embedding efficiency. From this discovering many
stegoschemes have been proposed using different types of codes. Relations
between codes and stegoschemes will be treated in more detail in Section
2. In general, in code based steganography (also called matrix embedding),
given a code C (or a family of such codes, as explained below), the embedding
is realized by using a decoding map of C. It turns out that every decoding
map of C provides a realization of it as a stegoscheme. This nice idea
encountered in practice a serious problem: the absence of effective complete
decoding methods. Indeed, for nearly all currently known decoding algorithms,
most errors are impossible to decode, which means that when using these
algorithms, the majority of times the embedding process fails. In contrast,
complete decoding algorithms, for which this problem does not occur, are
computationally infeasible, so their practical applications are reduced to ei-
ther perfect codes or codes of small length, which offer low embedding efficiency.

In this paper we propose a novel method to ensure embedding success, in
principle for using any code. It is based on puncturing the original code as
many times as necessary to get a new code whose covering radius equals to the
correction capability of the original one. As we shall see, this method may also
improve the embedding efficiency so that it guaranties embedding success and
may give high embedding efficiency.

The organization of the paper is as follows. In Section 2 we recall the con-
nection between coding theory and steganography, as well as we point the above
mentioned drawback of stegoschemes obtained by this method, concerning de-
coding maps. Our method is exposed in detail in Section 3. Finally Section 4
deals to the parameters of the new stegoschemes. Some numerical experiments
concerning BCH codes are reported.

2 From coding theory to steganography

2.1 Stegoschemes and codes

Let A be a finite alphabet with q elements and let n ≥ r be two positive integers.
The purpose of a stegoscheme S is to embed a message m ∈ Ar into a cover
vector x ∈ An, making as few changes as possible in x, and later extract the
information hidden in the modified vector. Formally, a (n, r)-stegoscheme S is
defined as a couple of functions S = (Emb,Ext)

Emb : An ×Ar −→ An and Ext : An −→ Ar,

such that Ext(Emb(x,m)) = m, for all (x,m) ∈ An × Ar. This condition
guarantees that we always retrieve the right message m from the stego vector
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Emb(x,m). The stegoscheme is called proper if d(x,Emb(x,m)) ≤ d(x,v) for
all v such that Ext(v) = m, where d stands for the Hamming distance. This
means that the number of embedding changes is the minimum possible allowed
by the extracting map.

The first stegoscheme based on coding theory was proposed by Crandall in
1998, by using the family of binary Hamming codes, see [Cra98]. Let m be a
positive integer and let H be a parity check matrix of the binary Hamming code
of length n = 2m − 1. The embedding and extracting functions are as follows

Emb : Fn
2 × Fm

2 −→ Fn
2

(x,m) 7−→ x− cl(xHT −m),

Ext : Fn
2 −→ Fm

2

v 7−→ vHT ,

where cl(z) stands for a coset leader of z ∈ Fm
2 . That is an element of minimum

Hamming weight among those v ∈ Fn
2 verifying vHt = z. The fact that

Ext(Emb(x,m)) = m is straightforward.

This stegoscheme is so efficient that Westfeld developed the famous software
F5 based on it [Wes01]. The notion of efficiency, which is the main subject
of this paper, will be detailed in Section 2.2. After Crandall’s discovery, other
authors proposed the same model of stegoscheme, based on different types
of codes: BCH [SW06, ZSK09], Reed-Solomon [FG09], trellis codes [FJF10], etc.

More generally, in [MB11] it is shown that a (n, r)-stegoscheme is equivalent
to a family {(Cm,decm)}m∈Ar where the Cm’s are nonempty disjoint codes in
An (not necessarily linear), decm is a decoding map for Cm and ∪Cm = An.
Let us remember that a decoding map for a code C ⊆ An is just a map dec :
X ⊆ An −→ C. If X = An then the decoding is said to be complete (as
every received vector can be decoded). If dec verifies the additional property
that d(x,dec(x)) = d(x, C) for all x ∈ X , then dec is called minimum distance
decoding. Given such a family, the corresponding stegoscheme has embedding
and extracting functions

Emb(x,m) = decm(x) and Ext(v) = m if v ∈ Cm.

If dec is a minimum distance decoding, then the obtained stegoscheme is
proper. This method allows us to construct a large amount of stegoschemes, to
which we collectively refer as code-based stegoschemes. If A is a field, A = Fq,
and C0 is [n, n− r] linear, it is natural to consider the partition of Fn

q given by
the translates of C0 (or equivalently, the cosets of Fn

q /C0). Note that given a
decoding map dec0 of C0, the function decm(x) = cl(m) + dec0(x − cl(m)) is
a decoding map for the translate Cm = cl(m) + C0. By using the systematic
writing of C0, say in the first n − r positions, we can avoid the need of
computing coset leaders in the embedding process (unless they are required
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by dec0), as Emb(x,m) = (0,m) + dec0(x − (0,m)), see [MB11]. The same
idea can be applied if C0 is a group (nonlinear) code or a general systematic code.

Therefore, given a linear code C, each decoding map of C provides a realiza-
tion of C as stegoscheme. Recall that there is a universal decoding method for
linear codes, the so-called syndrome-leader decoding, based on pre-computing all
syndromes and leaders. For example, Crandall’s stegoscheme is obtained from
Hamming codes by using syndrome-leader decoding.

2.2 Embedding Efficiency

The behavior of a stegoscheme, and subsequently the comparison of two of them,
is based on its parameters. Let S be a (n, r)-stegoscheme which embeds a mes-
sage of Ar in a vector of An with T modifications at most and T̃ modifications
in average. The relative payload, change rate and average change rate of S are
respectively defined as

a =
r

n
, R =

T

n
and R̃ =

T̃

n
.

The embedding efficiency and average embedding efficiency of S are defined as

e =
r

T
and ẽ =

r

T̃
.

Recall that when S is arising from a linear or systematic code C (by the method
above explained), then r is the redundancy of C, and T, T̃ are the covering and
average radii of C, see for example [MB11].

Let S1 and S2 be two stegoschemes defined over the same alphabet A. If
they have the same relative payload, then both embed as much information by
using the same quantity of cover-medium. Thus S1 is better than S2 if and only
if it produces less distortion in the cover, that is, if and only if the embedding
efficiency of S1 is greater than the embedding efficiency of S2. So we look for
stegoschemes with the biggest embedding efficiency for a fixed relative payload.
There exists an upper on the embedding efficiency for a fixed relative payload
as follows.

Theorem 1. Let S be a q-ary stegoscheme with relative payload a and embed-
ding efficiency e. Then

e ≤ a

H−1
q (a)

,

where H−1
q is the inverse function of the q-ary entropy Hq(x) = x logq(q − 1)−

x logq(x)− (1− x) logq(1− x).

See [CMB+08, Ch. 12, page 454]. The same result holds asymptotically for
the average embedding efficiency.
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2.3 Realizations of codes as stegoschemes

Let C be a [n, k] linear code over A = Fq. As seen in the previous section,
each decoding map dec of C provides a realization of C as a (n, r) stegoscheme,
Sdec. All of them are different although they share the same theoretical pa-
rameters: r = n − k is the redundancy of C, R is the covering radius of C
and R̃ is the average radius of C. This method of making stegoschemes has, in
practice, a serious difficulty: the dramatic absence of computationally efficient
complete decoding maps for a given code. As already mentioned above, there is
a universal complete decoding method for linear codes, namely syndrome-leader
decoding. For binary codes we can also use gradient decoding, based on mini-
mal codewords. However, these two methods require the use (computation and
storage) of tables, usually of a very large size, so they have mainly a theoretical
interest, being their practical applications restricted to the case of perfect codes
or codes of small length n. Note that stegoschemes of high efficiency have large
n. Algebraic decoding methods (not based on using tables) may be computa-
tionally efficient, but they are far to be complete; usually they decode up to
the packing radius t = b(d − 1)/2c, where d is the minimum distance, or even
less. For example, Berlekamp-Massey algorithm for decoding for BCH codes,
decodes errors of weight up to one half of the designed minimum distance. For
BCH two-error correcting codes (which are quasi-perfect) a complete decoding
method is available in [Har71] by using small tables and these codes have been
proposed as good candidates for stegoschemes, see [ZSK09]. For other codes
most vectors cannot be decoded. Consequently, most vectors of An cannot be
used as a cover vectors for embedding. Remark that when using codes for error-
correction, error patterns of low weight are more probable while for embedding
purposes all vectors are, in principle, equally likely as covers.

Example 1. Let C = BCHm(3) be the primitive binary triple error correcting
BCH code of length n = 2m − 1. Suppose first we want to decode C by using
syndrome-leader decoding. To that end we need a table containing all syndromes
and leaders. Since the total number of cosets is 23m = (n+ 1)3, the size of this
table, in megabits, is the given in the following Table 1.

m size in Mb

5 1.507
6 21.234
7 310.378
8 4680.843
9 72209.138
10 1130650.141

Table 1: Size of a syndrome-leader table for the code BCHm(3).

It is clear that we need other decoding methods even for small values of m.
Let us consider the minimum distance decoding map dec obtained by means of
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Berlekamp-Massey algorithm. It corrects up to 3 errors. Since the covering
radius of this code is 5, see [Hel78], error patterns of weight ≤ 5 can occur. Let
Aj denote the number of cosets having leaders of weight j. Since every vector
of weight ≤ 3 is a coset leader and there are 23m = (n + 1)3 cosets, then the
number of cosets whose vectors cannot be decoded by dec is

A4 +A5 = (n+ 1)3 −
3∑

j=0

(
n
j

)
=
n(n+ 1)(5n+ 13)

6
.

Since the leading coefficient of the numerator is 5, asymptotically 5/6 of error
patterns cannot be decoded. Consequently, the stegoscheme based on Cm and
dec, successfully embeds a message into a random cover vector with probability
close to 1/6. Let us note, however, that it is known a computationally efficient
decoding algorithm for C, see [VDHB76]. In fact BCH(2) and BCH(3) are the
only codes in the family of BCH codes for which such a complete decoding is
available.

Given a (n, r) stegoscheme S = (Emb,Ext), the previous considerations
allow us to define the embedding probability pS of S as the probability that
Emb(x,m) can be computed over all possible pairs (x,m) ∈ An×Ar (considered
as equally likely). We define also the embedding efficiency of S relative to the
embedding probability pS (resp. average embedding efficiency of S relative to the
embedding probability) as

erel = e.pS and ẽrel = ẽ.pS .

Example 2. (Example 1 continued). Let S be the stegoscheme obtained from
C = BCHm(3). The parameters of S can be obtained from the parameters of
C. In particular, n = 2m − 1, r = 3m (the redundancy of C) and T = 5 (the
covering radius of C). In the same way, we can obtain the average change rate
T̃ of S as the average radius of C,

T̃ = 2−3m
5∑

j=0

jAj .

Since the values of A4 and A5 are not known in general, we can not compute
exactly this number. However, we have the following bounds [VDHB76]

5n(5n+ 13)

6
≤ A4 ≤

n(5n2 + 10n− 3)

6
,

4n(n+ 2)

3
≤ A5 ≤

n(n− 4)(5n+ 13)

6
.

The embedding probability can be deduced from our computations in Example 1,
as

pS = 2−3m
3∑

j=0

(
n
j

)
≈ 1

6
.

The following Table 2 collects the efficiency and relative efficiency of these
stegoschemes for some small values of m.
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m n r T̃ e ẽ pS erel ẽrel

4 15 10 3.33 2 3.003 0.141 0.281 0.422
5 31 15 4.28 3 3.504 0.152 0.457 0.532
6 63 18 4.06 3.6 4.433 0.159 0.573 0.704
7 127 21 3.85 4.2 5.454 0.162 0.684 0.883
8 255 24 3.84 4.8 6.250 0.163 0.791 0.891
9 511 27 3.84 5.4 7.031 0.166 0.896 1.167
10 1023 30 3.84 6 7.812 0.166 0.996 1.296

Table 2: Embedding efficiency of stegoschemes based on BCHm(3) codes.

3 A method to ensure embedding success

As we highlighted in the previous section, it is important to have a stegoscheme
with an embedding probability as close to one as possible. In this section, we
propose to modify the stegoscheme arising from a given code in order to ensure
success (or at least to improve its probability).

3.1 Puncturing codes

Let C be a [n, n−r, d] code of covering radius ρ. Let dec be a decoding map of C,
which can decode up to t errors. The main idea of our method is to imitate, in
a sense, the behavior of perfect codes. To that end, we will puncture C as many
times as necessary to obtain a code C′ with covering radius ρ′ = t. Then we can
use dec to deduce a decoding map for C′, as explained in the next paragraph.
Let us remember that given a code C, puncturing C at a position i is to delete
the i-th coordinate in each codeword. If G is a generator matrix for C, then a
generator matrix for the punctured code is obtained from G by deleting column
i (and dependent rows if necessary), see [HP03, Sect. 1.5.1].

3.2 Decoding punctured codes

Let C be a binary linear code and C′ be the code obtained from C by puncturing
at a set of positions P ⊂ {1, . . . , n}. Let P = {1, . . . , n} \ P, πP be the
projection on the coordinates of P and dec a decoding map for C. The following
algorithm provides a decoding map for C′.

Proposition 1. The algorithm 1 is correct and runs in O(q|P|cdec), where cdec

is the complexity of dec the decoding map of C.

Proof. Let y′ ∈ Fn−|P|
q and c′ ∈ C′ be a codeword such that d(y′, c′) ≤ t. Then

there exist c ∈ C such that πP(c) = c′. Let us to note that y ∈ Fn
q such that

πP(y) = πP(c) and πP(y) = y′. Then c′ is in the returned list. The statement
of the complexity is obvious.
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Algorithm 1: Decoding algorithm for the punctured code C′.

Input : The punctured set P, the received vector y′ ∈ Fn−|P|
q and the

decoding map dec of C.
Output: The list of all codewords c′ of C′ such that d(c′,y′) ≤ t.

L ← ∅;
// for q|P| elements

foreach y ∈ Fn
q such that πP(y) = y′ do

L ← L ∪ dec(y);
end
return {πP(c) : c ∈ L}

If dec corrects up to t errors, the previous algorithm provides a decoding
map for C′ correcting t errors as well: as the returned list is nonempty, simply
take one of the vectors closest to y′.

Note that the statement about complexity in Proposition 1 has been com-
puted considering the worst case. In following, we propose a little improvement
for the average case.

Let y′ ∈ Fn−|P|
q , y′ 6∈ C′, be the vector to be decoded and let c′ ∈ C′ be the

closest codeword of y′. Then d(c′,y′) = d(C′,y′). Let e′ ∈ Fn−|P|
q be such that

y′ = c′+ e′, hence wt(e′) ≤ ρ′ = t. There exists a “prefix” vector p ∈ F|P|q such
that c = (p, c′) ∈ C, with πP(c) = p and πP(c) = c′. Finally, let y, e ∈ Fn

q such
that y = (p,y′) = c + e. As stated before, Algorithm 1 works by considering
all possible prefixes. However, since e = (0, e′), and hence wt(e) = wt(e′), this
algorithm can be slightly changed to avoid unnecessary iterations. In fact, the
minimum number of iterations depends on wt(e′). It is simple to see that the
number of iterations needed to decode is⌈

q|P|

Vq(|P|, t− wt(e′))

⌉
.

Furthermore, all this iterations should be parallelized to speed up the algorithm.
Of course, the value wt(e′) is not known a priori, but for each codeword ci ∈ L,
then distance d(ci,y) gives an upper bound to the distance between y and the
closest codeword c.

Example 3. (Continued from previous examples). Consider the code BCH4(3)
of parameters [15, 5]. Here t = 3 and, as we can see in Table 5, we get |P| = 3.

Let C be the binary BCH4(3) code, P = {1, 2, 3} be a punctured set and C′
be the punctured code of C at the position given by P. We propose to decode
on C′, y′ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) the received word. We obtain c1 =
(1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0) by the decoding of y1. We deduce that c′1 =
πP̄(c1) = (1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0) is a codeword of C′. Since d(c′1,y’) = 2,
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(0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1)
(0, 1, 0) (1, 0, 1)
(1, 0, 0) (1, 1, 0)

Table 3: All binary vectors of length 3 sorted by weights.

then only ⌈
23

Vq(3, 1)

⌉
= 2

decoding calls is needed. Let y2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) be the sec-
ond, and last, virtual received word of C. Note that the prefix used in this case,
(1, 1, 1), is the farthest from the previous one, that is (0, 0, 0). The decoding on
C gives us c2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), which allows us to compute
c′2 = πP̄(c2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). Since d(c′2,y

′) = 3 > d(c′1,y
′), we

deduce that the closest codeword is c′1.
Another way to see our trick on this example, is after the computation of c1,
we observe that d(c′1,y

′) = 2, then the closest codeword from y′ is at most at
distance 2. Since the decoding algorithm on C can correct 3 errors, there is an
extra error for the prefix set, see Table 3. Thus the decoding with prefix (0, 0, 0)
manage the prefix vectors of weight 0 and 1. Moreover, the decoding with prefix
(1, 1, 1) manage the prefix vectors of weight 2 and 3, so all prefix vectors are
managed only by these 2 decodings.
With this trick, we need only 2 decoding processes whereas our previous algo-
rithm needs 8.

3.3 On the number of punctured positions

Since the decoding complexity of the punctured code C′ is exponential on the
number of punctured positions, we want to minimize this quantity. To that end
we introduce some new notation. For a given integer j ≤ ρ, let

Yj =
{
y ∈ Fn

q : d(y, C) ≥ ρ− j
}

Ej =
{
y− c ∈ Fn

q : y ∈ Yj , c ∈ C and d(y, c) = d(y, C)
}

Pj =
⋂
e∈Ej

supp(e).

Proposition 2. Let j be a positive integer and let C′j be the code obtained by
puncturing C at the positions of Pj. The covering radius of C′j satisfies

ρ′j ≤ max {ρ− j − 1, ρ− |Pj |} .

Proof. Assume there exists y′ ∈ Fn−|Pj |
q such that d(y′, C′) >

max {ρ− j − 1, ρ− |Pj |}. Let (c′, e′) ∈ C′ × Fn−|Pj |
q such that y′ = c′ + e′ and

wt(e′) = d(y′, c′) = d(y′, C′) > max {ρ− j − 1, ρ− |Pj |}. Then there exist
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y ∈ Yj and (c, e) ∈ C × Ej such that πPj
(y) = y′ and{

y = c + e,
πPj

(e) = e′.

Since e ∈ Ej , we have Pj ⊂ supp(e) and so wt(e) = wt(e′) + |Pj | > ρ, which is
impossible by the definition of covering radius.

Therefore, greater j implies smaller ρ − j − 1 but also greater ρ − |Pj |.
For steganographic purposes we must puncture to obtain a code C′ with a
covering radius equal to the correction capacity of the decoding map of C. Since
puncturing n−1 times leads to a code of covering radius 0, this is always possible.

Algorithm 2: Algorithm to compute the punctured code C′.
Input : A code C, its covering radius ρ and a positive integer t.
Output: A couple (C′,P), where C′ is obtained from C by puncturing at

the positions of P and has covering radius t.

(C′, ρ′)← (C, ρ);
P ← ∅;
while t 6= ρ′ do

CL← leaders of cosets of C′ with weight greater than t;
imax ← the position which occurs the most of time in the support of
CL;
P ← P ∪ {imax};
C′ ← C′ punctured at the position imax;
ρ′ ← covering radius of C′;

end
return (C′,P)

The main drawback of this algorithm is that it could be very expensive in
time and memory complexities, since it requires the computation of the whole
set of the coset leaders. Note however, that this computation must be done just
once for code (as for any other parameter of C).

3.4 A stegoscheme based on a punctured code

Let C be a code of covering radius ρ and dec a decoding map correcting t errors.
Assume we know the set P of positions to obtain C′, the punctured code of
covering radius t, which can be computed by using Algorithm 2. Moreover let
dec′ be a decoding map for C′ obtained from Algorithm 1. Finally, let H ′ be a
parity check matrix of C′. It can be easily obtained from a generator matrix G′

which, in turn, can be easily obtained from a generator matrix G of C. We have
all the ingredients to define a stegoscheme S ′ based on the matrix embedding
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principle with the punctured code C′. Let n′ and r′ be, respectively, the length
and redundancy of C′. The embedding map of S ′ is

Emb : Fr′

2 × Fn′

q −→ Fn′

q

(m , v) 7−→ y + dec′(v− y),

where y is an element of Fn′

q such that yH ′T = m. Recall that when C′ is in
systematic form, then one can simply take y = (0,m). The extracting map is

Ext : Fn′

q −→ Fr′

2

y 7−→ yH ′T .

It is simple to check that Ext (Emb (m,v)) = m so that couple (Emb,Ext)
defines a true stegoscheme S ′.

3.5 Tradeoff

In previous sections we have suggested the use of puncturing up to ensuring
embedding success. However, since complete decoding is known to be an NP-
hard problem [BMVT78], in specific situations this goal may be too ambitious.

Indeed, we can simply use the puncturation principle to increase the em-
bedding probability, but not necessarily up to one. For example, the sender
could have a target embedding probability pS < 1, which is not reachable by
the original stegoscheme. Then we can stop the puncturation process when the
target embedding probability is reached. Analogously, since the complexity of
the decoding algorithm for punctured codes is exponential in the number of
the punctured positions, the steganographer may also limit this number to a
preset maximum, according to available computing resources. In short, the pro-
posed method is totally versatile to be modified according to the requirements
of the sender. In the rest of this article, we puncture up to have an embedding
probability pS = 1.

4 Parameters of the new stegoschemes

Keeping notations as in the previous section, let C be a code for which there ex-
ists an efficient algorithm capable of correcting t errors. Let C′ be its punctured
of covering radius t, and let S,S ′ be the stegoschemes obtained from C and C′
respectively. The parameters of S ′ are

a′ =
r′

n′
, R′ =

t

n′
, e′ = e′rel =

r′

t
, R̃′ =

T̃ ′

n′
, ẽ′ = ẽ′rel =

r′

T̃ ′
,

where T̃ ′ is the average covering radius of C′. It is not easy to obtain general
closed formulas for these parameters, since they depend on the number and
location of punctured positions, which in turn depend on the code C and the
number t. However, except for perfect codes (for which t is just the covering
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m BCHm(2) punctured BCHm(2)

n r a R̃ e ẽ n′ r′ a′ R̃′ e′ ẽ′

4 15 8 0.533 0.164 2.67 3.25 11 4 0.363 1.375 2 2.909
5 31 10 0.323 0.0801 3.33 4.03 28 7 0.250 1.766 3.5 3.965
6 63 12 0.190 0.0396 4 4.81 59 8 0.135 1.777 4 4.501
7 127 14 0.110 0.0197 4.66 5.61 123 10 0.081 1.879 5 5.322
8 255 16 0.0627 0.0098 5.34 6.41 251 12 0.047 1.939 6 6.189
9 511 18 0.0352 0.00489 6 7.2 507 14 0.027 1.969 7 7.110
10 1023 20 0.196 0.00244 6.66 8 1018 15 0.014 1.969 7.5 7.617
11 2047 22 0.0107 0.00122 7.34 8.80 2042 17 0.008 1.984 8.5 8.566

Table 4: Parameters of stegoschemes arising from binary BCHm(2) codes and
punctured BCHm(2) codes.

m BCHm(3) punctured BCHm(3)

n r a R̃ e ẽ n′ r′ a′ R̃′ e′ ẽ′

4 15 10 0.667 0.222 2 3 12 7 0.583 0.191 2.33 3.05
5 31 15 0.484 0.138 3 3.5 25 9 0.36 0.0985 3 3.65
6 63 18 0.286 0.0645 3.6 4.43 56 11 0.197 0.0434 3.67 4.52
7 127 21 0.165 0.0303 4.2 5.45 121 15 0.124 0.0230 5 5.38
8 255 24 0.0941 0.0151 4.8 6.25 248 17 0.0686 0.0112 5.66 6.11
9 511 27 0.0529 0.00751 5.4 7.03 504 20 0.0397 0.00572 6.66 6.94

Table 5: Parameters of stegoschemes arising from binary BCHm(3) codes and
punctured BCHm(3) codes.

radius of C and we do not need to puncture) we have pS′ = 1, n′ < n, a ≥ a′ and
T ′ = t < T , T̃ ′ < T̃ . The embedding efficiency of S ′ may be larger or smaller
than the embedding efficiency of S, for a relative payload fixed.

4.1 Numerical experiments

In order to see some concrete results showing the performance of our method, we
list some numerical results obtained for primitive two and three error correcting
binary BCH codes, taking the number t given by the BCH bound (that is,
allowing efficient decoding by means of Berlekamp-Massey algorithm, as usual).
These codes have been studied by many authors[VDHB76, Hel78] and proposed
as good candidates for constructing stegoschemes. It is well known that they
have covering radii 3 and 5 respectively, and that BCHm(2) is quasi-perfect. By
using Algorithm 2, we have determined the couple (C′,P) for some two and three
error-correcting binary BCH codes and subsequently computed the parameters
of the corresponding stegoschemes.

The obtained results are listed in Tables 4 (two-error-correcting, t = 2)
and 5 (three-error-correcting, t = 3). Notations in these tables are same used
throughout this article. In both cases we puncture BCH codes to get other
codes whose covering radii are equal to the correction capabilities of BCH codes.
Then R = 3, R′ = 2 for two-error-correcting and R = 5, R′ = 3 for three-error-
correcting BCH codes. We do not include the probability of embedding success
for punctured codes, since in all cases such probability is exactly 1. For a better
understanding of these results, and a comparison with stegoschemes coming
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Figure 1: Comparison between stegoschemes based on the binary BCHm(2) and
their punctured associated codes.
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Figure 2: Comparison between stegoschemes based on the binary BCHm(3) and
their punctured associated codes.
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from original BCH codes, we also include a graphical representation in Figures
1 and 2.

As we see, the new stegoschemes may have a better performance in terms of
embedding efficiency. For example, in Table 4, we can see how the stegosystem
based on BCH9(2) has the same embedding efficiency as the stegoscheme based
on BCH8(2)′, but with a smaller relative payload. Thus we conclude that the
stegoschemes based on punctured codes may be better than the original ones
in the worst case, although they do not appear to be better in terms of average
embedding efficiency.

All computations have been performed by using the system MAGMA
[BCP97], where BCH codes are managed in systematic form. We remark that
all punctured positions have resulted to be among the first n − r (systematic)
positions. Given our limited computer resources, we have not used Algorithm 2
in full to obtain the puncturing of BCH8(3) and BCH9(3). Instead we have
punctured these codes just at the first positions, up to obtain a code with cov-
ering radius R′ equal to t = 3 (and then true results may be somewhat better
than those shown in Table 5).

5 Conclusion

We have proposed a method to ensure or increase the probability of embedding
success for stegoschemes arising from error correcting codes. This method is
based on puncturing codes. As we have seen, the use of these punctured codes
can also increase the embedding efficiency of the obtained stegoschemes.
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