On the decoding of quasi-BCH codes

Morgan Barbier*
morgan.barbier@unicaen.fr

Clément Pernet[†] clement.pernet@imag.fr

Guillaume Quintin[‡] quintin@lix.polytechnique.fr

2012/12/21

Abstract

In this paper we investigate the structure of quasi-BCH codes. In the first part of this paper we show that quasi-BCH codes can be derived from Reed-Solomon codes over square matrices extending the known relation about classical BCH and Reed-Solomon codes. This allows us to adapt the Welch-Berlekamp algorithm to quasi-BCH codes. In the second part of this paper we show that quasi-BCH codes can be seen as subcodes of interleaved Reed-Solomon codes over finite fields. This provides another approach for decoding quasi-BCH codes.

keywords: Quasi-cyclic code, quasi-BCH code, BCH code, Reed-Solomon, interleaved code

1 Introduction

Many codes with best known minimum distances are quasi-cyclic codes or derived from them [LS03, Gra07]. This family of codes is therefore very interesting. Quasi-cyclic codes were studied and applied in the context of McEliece's cryptosystem [McE78, BCGO09] and Niederreiter's [Nie86, LDW94]. They permit to reduce the size of keys in opposition to Goppa codes. However, since the decoding of random quasi-cyclic codes is difficult, only quasi-cyclic alternant codes were proposed for the latter cryptosystem. The high structure of alternant codes is actually a weakness and two cryptanalysis were proposed in [FOPT10, UL10]

^{*}Université de Caen - GREYC, Boulevard Maréchal Juin, BP 5186, 14032 Caen

 $^{^\}dagger \text{Univ.}$ Joseph Fourier INRIA/LIG-MOAIS, 51 avenue Jean Kuntzmann, 38330 Montbonnot

 $^{^{\}ddagger}$ École polytechnique - LIX, 91128 Palaiseau Cedex

1.1 Our contributions

In this paper we investigate the structure of quasi-BCH codes. In the first part of this paper we show that quasi-BCH codes can be derived from Reed-Solomon codes over square matrices. It is well known that BCH codes can be obtained from Reed-Solomon codes [MS86, Theorem 2, page 300]. We extend this property to quasi-BCH codes which allows us to adapt the Welch-Berlekamp algorithm to quasi-BCH codes.

Theorem 1. Let $\Gamma \in M_{\ell \times \ell}(\mathbb{F}_{q^s})$ be a primitive m-th root of unity and $\mathcal{C} = \operatorname{Q-BCH}_q(m,\ell,\delta,\Gamma)$. Then there exists a RRS code \mathcal{R} over the ring $M_{\ell \times \ell}(\mathbb{F}_{q^s})$ with parameters $[n,n-\delta+1]_{M_{\ell \times \ell}(\mathbb{F}_{q^s})}$ and a \mathbb{F}_q -linear, F_q -isometric embedding $\psi: \mathcal{C} \to \mathcal{R}$.

In the second part we show that quasi-BCH codes can be seen as subcodes of interleaved Reed-Solomon codes.

Theorem 2. The quasi-BCH code C over \mathbb{F}_q is an interleaved code of ℓ subcodes of Reed-Solomon codes over $\mathbb{F}_{q^{s'}}$ in the following sense: there exists ℓ Reed-Solomon codes C_1, \ldots, C_ℓ over \mathbb{F}_q and an isometric isomorphism from C, equipped with the ℓ -block distance, to a subcode of the interleaved code with respect to C_1, \ldots, C_ℓ .

1.2 Related work

In [LF01, LS01], ℓ -quasi-cyclic codes of length $m\ell$ are seen as R-submodules of R^{ℓ} for a certain ring R. However, in [LF01], Gröbner bases are used in order to describe polynomial generators of quasi-cyclic codes whereas in [LS01], the authors decompose quasi-cyclic codes as direct sums of shorter linear codes over various extensions of \mathbb{F}_q (when $\gcd(m,q)=1$). This last work leads to an interesting trace representation of quasi-cyclic codes. In [CCN10], the approach is more analogous to the cyclic case. The authors consider the factorization of $X^m-1\in M_{\ell}(F_q)[X]$ with reversible polynomials in order to construct ℓ -quasi-cyclic codes canceled by those polynomials and called $\Omega(P)$ -codes. This leads to the construction of self-dual codes and codes beating known bounds. But the factorization of univariate polynomials over a matrix ring remains difficult. In [Cha11] the author gives an improved method for particular cases of the latter factorization problem.

2 Prerequisites

2.1 Reed-Solomon codes over rings

We recall some basic definitions of Reed-Solomon codes over rings in this section. We let A be a ring with identity, we denote by A^{\times} the group of units of A and by Z(A) the center of A, the commutative subring of A consisting of all the elements of A which commutes with all the other elements of A. We denote by

A[X] the ring of polynomials over A and by $A[X]_{\leq k}$ the polynomials over A of degree at most k-1.

Definition 1. Let

$$f = \sum_{i=0}^{d} f_i X^i \in A[X]$$

be a polynomial with coefficients in A and $a \in A$. We call left evaluation of f at a the quantity

$$f(a) := \sum_{i=0}^{d} f_i a^i \in A$$

and right evaluation of f at a the quantity

$$(a)f := \sum_{i=0}^{d} a^{i} f_{i} \in A.$$

Remark 1. For $f, g \in A[X]$ and $a \in A$, we obviously have f(a) = (a)f whenever $a \in Z(A)$, (f+g)(a) = f(a) + g(a), (a)(f+g) = (a)f + (a)g. If a commutes with all the coefficients of g we also have (fg)(a) = f(a)g(a) and (a)(gf) = (a)g(a)f.

Definition 2. Let $0 < k \le n$ be two integers. Let (x_1, \ldots, x_n) and $v = (v_1, \ldots, v_n)$ be two vectors of A^n be such that $x_i - x_j \in A^{\times}$ and $x_i x_j = x_j x_i$ for all $i \ne j$ and $v_i \in A^{\times}$ for all i.

The left submodule of A^n generated by the vectors

$$(f(x_1) \cdot v_1, \dots, f(x_n) \cdot v_n) \in A^n \text{ with } f \in A[X]_{\leq k}$$

is called a left generalized Reed-Solomon code (LGRS) over A with parameters $[v, x, k]_A$ or [n, k] if there is no confusion on x and v.

The right submodule of A^n generated by the vectors

$$(v_1 \cdot (x_1)f, \dots, v_n \cdot (x_n)f) \in A^n \text{ with } f \in A[X]_{\leq k}$$

is called a right generalized Reed-Solomon code (RGRS) over A with parameters $[v,x,k]_A$ or [n,k] if there is no confusion on x and v. The vector x is called the support of the code. If $v=(1,\ldots,1)$, the codes constructed above are called left Reed-Solomon (LRS) and right Reed-Solomon (RRS) codes.

Definition 3. Let $x = (x_1, ..., x_n) \in A^n$. We call the Hamming weight of x the number of nonzero coordinates.

$$w(x) := w(x_1, \dots, x_n) = |\{i : x_i \neq 0\}|.$$

Let $y = (y_1, \ldots, y_n) \in A^n$. The Hamming distance between x and y is

$$d(x, y) = w(x - y) = |\{i : x_i \neq x_j\}|.$$

The minimum distance of any subset $S \subseteq A^n$ is defined as

$$\min \left\{ d(x,y) : x,y \in S \text{ and } x \neq y \right\}.$$

Proposition 1. A LGRS (resp. RGRS) code is a free left (resp. right) submodule of A^n . A LGRS (resp. RGRS) code with parameters [n,k] has minimum distance n-k+1.

Proof. It suffices to see that the maps

$$\begin{array}{ccc} A^n & \longrightarrow & A^n \\ (a_1, \dots, a_n) & \longmapsto & (a_1 v_1, \dots, a_n v_n) \\ (a_1, \dots, a_n) & \longmapsto & (v_1 a_1, \dots, v_n a_n) \end{array}$$

are respectively left and right isometric automorphisms of A^n .

2.2 Quasi cyclic and quasi BCH codes

Quasi cyclic codes form an important family of codes defined as follow.

Definition 4. Let $T: \mathbb{F}_q^n \to \mathbb{F}_q^n$ to be the left cyclic shift defined by

$$T(c_1, c_2, \dots, c_n) = (c_2, c_3, \dots, c_1).$$

We call ℓ -quasi-cyclic code over \mathbb{F}_q of length n any code of length n over \mathbb{F}_q stable by T^{ℓ} . If the context is clear we will simply say ℓ -quasi-cyclic code.

We will focus in this paper on quasi-BCH codes which form a subfamily of quasi-cyclic codes. They can be seen as a generalization of BCH codes in the context of quasi-cyclic codes. For we need primitive roots of unity defined in a extension of \mathbb{F}_q , say \mathbb{F}_{q^s} to construct BCH codes over \mathbb{F}_q .

Proposition 2. Then there exists a primitive $q^{s\ell}-1$ -th root of unity in $M_{\ell}(\mathbb{F}_{q^s})$.

Proof. The proof can be found in [BCQ12b, Proposition 16, page 911].

Definition 5. Let Γ be a primitive m-th root of unity in $M_{\ell}(\mathbb{F}_{q^s})$ and $\delta \leq m$. We define the ℓ -quasi-BCH code of length $m\ell$, with respect to Γ , with designed minimum distance δ , over \mathbb{F}_q by

Q-BCH_q
$$(m, \ell, \delta, \Gamma) :=$$

$$\left\{ (c_1, \dots, c_m) \in (\mathbb{F}_q^{\ell})^m : \sum_{j=0}^{m-1} (\Gamma^i)^j (c_{j+1})^T = 0 \text{ for } i = 1, \dots, \delta - 1 \right\}.$$

Note that Q-BCH $_q(m, \ell, \delta, \Gamma)$ is a quasi-cyclic code.

Definition 6. The ℓ -block weight of $(x_{11}, \ldots, x_{1\ell}, \ldots, x_{m1}, \ldots, x_{m\ell}) \in \mathbb{F}_q^{m\ell}$ is defined to be

Block-
$$w_{\ell}(x) := |\{i : (x_{i1}, \dots, x_{i\ell}) \neq 0\}|.$$

The ℓ -block distance between $x, y \in \mathbb{F}_q^{m\ell}$ is defined to be Block- $\mathbf{w}_{\ell}(x-y)$.

3 Reed-Solomon codes and quasi-BCH codes

3.1 The relation between quasi-BCH and Reed-Solomon codes

We show in this section that under certain assumptions on the support of Reed-Solomon codes, the dual of a LRS code is a RRS code. From this fact we show that quasi-BCH can be constructed from Reed-Solomon codes over square matrices rings. In this Subsection we let A designate a finite ring with identity.

Definition 7. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ be two vectors of A^n . The inner product is defined as

$$\langle x, y \rangle := \sum_{i=0}^{n} x_i y_i.$$

Remark 2. Let S be a subset of A^n . Then the set $\{x \in A^n : \forall s \in S, \langle s, x \rangle = 0\}$ denoted by S^{\perp} is called the right dual of S and is a right submodule of A^n . Similarly, Let S be a subset of A^n . Then the set $\{x \in A^n : \forall s \in S, \langle x, s \rangle = 0\}$ denoted by $^{\perp}S$ is called the left dual of S and is a left submodule of A^n . Note that for all $x, y \in A^n$ and $\mu \in A$ we have $\mu \langle x, y \rangle = \langle \mu x, y \rangle$ and $\langle x, y \rangle \mu = \langle x, y \mu \rangle$.

Definition 8. We say that $a \in A$ is a primitive m-th root of unity if $a^m = 1$ and $\forall 0 < i < m, (a^i - 1) \in A^{\times}$.

Remark 3. Let $x = (1, \gamma, \gamma^2, \dots, \gamma^{m-1}) \in A^m$ where γ is a primitive m-th root of unity. Then a RRS or LRS code whose support is x is cyclic.

Proposition 3. Let $\gamma \in A$ be a primitive m-th root of unity. Let $x = (1, \gamma, \gamma^2, \dots, \gamma^{m-1}) \in A^n$. Then the right (resp. left) dual of the LGRS (resp. RGRS) code with parameters $[x, x, k]_A$ is the RRS (resp. LRS) code with parameters $[x, n - k]_A$.

Proof. We denote respectively by \mathcal{L} and \mathcal{R} the left generalized Reed-Solomon code with parameters $[x, x, k]_A$ and the right Reed-Solomon code with parameters $[x, n-k]_A$.

First note that \mathcal{L} is generated by the vectors

$$(1, \gamma^i, \gamma^{2i}, \dots, \gamma^{(m-1)i})$$
 for $i = 1, \dots, k$

and that \mathcal{R} is generated by the vectors

$$(1, \gamma^i, \gamma^{2i}, \dots, \gamma^{(m-1)i})$$
 for $i = 0, \dots, n-k-1$.

And we have for $0 \le i + j < n - 1$ in the commutative ring $Z(A)[\gamma]$

$$\sum_{i=0}^{m-1} \gamma^{(i+1)\ell} \cdot \gamma^{j\ell} = \sum_{i=0}^{m-1} \left(\gamma^{i+j+1} \right)^{\ell} = \frac{1 - \left(\gamma^{i+j+1} \right)^m}{1 - \gamma^{i+j+1}} = 0.$$

Therefore, by Proposition 1 and Remark 2, $\mathcal{L}^{\perp} \subseteq \mathcal{R}$ and $^{\perp}\mathcal{R} \subseteq \mathcal{L}$.

Again by Proposition 1 and Remark 2 an element $x \in A^n$ lies in \mathcal{L}^{\perp} if and only if

$$\begin{bmatrix}
\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \gamma & \gamma^2 & \dots & \gamma^{m-1} \\ 1 & \vdots & \vdots & & \vdots \\ 1 & \gamma^{k-1} & \gamma^{2(k-1)} & \dots & \gamma^{(k-1)(m-1)}
\end{pmatrix}
\begin{pmatrix} 1 & & & & \\ & \gamma & & & \\ & & \ddots & & \\ & & & \gamma^{m-1}
\end{pmatrix}
\end{bmatrix}
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0.$$
(1)

But in the commutative ring $Z(A)[\gamma]$ the matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \gamma & \gamma^2 & \dots & \gamma^{2(k-1)} \\ 1 & \vdots & \vdots & & \vdots \\ 1 & \gamma^{k-1} & \gamma^{2(k-1)} & \dots & \gamma^{(k-1)(k-1)} \end{pmatrix} \in M_{k \times k} \left(Z(A)[\gamma] \right)$$

is invertible. Therefore H is also invertible in $M_{k\times k}(A)$ and thus induces a group automorphism of A^k . If we let $x_H = (x_1, \ldots, x_k), x_U = (x_{k+1}, \ldots, x_n),$ we can rewrite equation (1) as

$$\left(\begin{array}{c|c} H \mid U\end{array}\right)\left(\begin{array}{c} x_H \\ \hline x_U\end{array}\right) = 0 \text{ and } \left(\begin{array}{c|c} H \mid 0\end{array}\right)\left(\begin{array}{c} x_H \\ \hline 0\end{array}\right) = -\left(\begin{array}{c|c} 0 \mid U\end{array}\right)\left(\begin{array}{c} 0 \\ \hline x_U\end{array}\right).$$

For each choice of x_U we have only one possible value for x_H . Thus $|\mathcal{L}^{\perp}| = |A|^{n-k} = |\mathcal{R}|$ by Proposition 1 and therefore $\mathcal{L}^{\perp} = \mathcal{R}$. Similarly, we have ${}^{\perp}\mathcal{R} = \mathcal{L}$.

Theorem 3. Let $\Gamma \in M_{\ell \times \ell}(\mathbb{F}_{q^s})$ be a primitive m-th root of unity and $\mathcal{C} = \operatorname{Q-BCH}_q(m,\ell,\delta,\Gamma)$. Then there exists a RRS code \mathcal{R} over the ring $M_{\ell \times \ell}(\mathbb{F}_{q^s})$ with parameters $[n,n-\delta+1]_{M_{\ell \times \ell}(\mathbb{F}_{q^s})}$ and a \mathbb{F}_q -linear, F_q -isometric embedding $\psi: \mathcal{C} \to \mathcal{R}$.

Proof. A parity-check matrix of \mathcal{C} is

$$H = \begin{pmatrix} I_{\ell} & \Gamma & \cdots & \Gamma^{m-1} \\ I_{\ell} & \Gamma^2 & \cdots & \Gamma^{2(m-1)} \\ \vdots & \vdots & & \vdots \\ I_{\ell} & \Gamma^{\delta-1} & \cdots & \Gamma^{(\delta-1)(m-1)} \end{pmatrix} \in M_{(\delta-1)\ell,m\ell}(\mathbb{F}_{q^s}).$$

Remark that H is a generator matrix of the LGRS code with parameters $[x,x,\delta-1]_{M_{\ell\times\ell}(\mathbb{F}_{q^s})}$ over the ring $M_{\ell\times\ell}(\mathbb{F}_{q^s})$ and by Proposition 3 its dual is the RRS with parameters $[x,\delta-1]_{M_{\ell\times\ell}(\mathbb{F}_{q^s})}$.

Now let

$$\psi: \mathcal{C} \longrightarrow (M_{\ell \times \ell}(\mathbb{F}_{q^s}))^m$$

$$(c_{11}, \dots, c_{1\ell}, \dots, c_{m1}, \dots, c_{m\ell}) \longmapsto \begin{bmatrix} c_{11} & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ c_{1\ell} & 0 & \dots & 0 \end{bmatrix}, \dots, \begin{pmatrix} c_{m1} & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ c_{m\ell} & 0 & \dots & 0 \end{bmatrix} .$$

Obviously, ψ is \mathbb{F}_q -linear, injective and isometric and by the above remark we have $\psi(\mathcal{C}) \subseteq \mathcal{R}$.

Theorem 3 generalizes the well-known [MS86, Theorem 2, page 300] relation between BCH codes and Reed-Solomon codes. The above relation will allow us to adapt the unique decoding algorithm from [BCQ12a] to quasi-BCH codes.

3.2 The Welch-Berlekamp algorithm for quasi-BCH codes

In this Subsection we let A designate a finite ring with identity. Before giving the Welch-Berlekamp decoding algorithm, we need to define what the *evaluation* of a bivariate polynomial over A is. Let $Q = \sum Q_{i,j} X^i Y^j \in A[X,Y]$ be such a polynomial. We define the *evaluation* of Q at $(a,b) \in A^2$ to be

$$(a,b)Q = \sum a^i b^j Q_{i,j} \in A.$$

Be careful of the order of a, b and $Q_{i,j}$. This choice will be explained in the proof of Lemma 1. Let $f \in A[X]$, we define the evaluation of Q at f to be

$$(X, f(X))Q = \sum_{i} X^{j}(f(X))^{j} Q_{i,j} \in A[X].$$

As in the univariate case, the evaluation maps defined above are not ring homomorphisms in general.

Lemma 1. Let $g \in A[X]$, $Q \in A[X,Y]$ of degree at most 1 in Y and $a \in A$. Then

$$(a)((X, g(X))Q) = (a, (a)g)Q.$$

Proof. We write

$$Q(X,Y) = Q_0(X) + Q_1(X)Y$$
$$= Q_0(X) + \left(\sum_i Q_{1i}X^i\right)Y.$$

The proof is an easy calculation:

$$(a)((X,g(X))Q) = (a)\left(Q_0(X) + \sum_i X^i g(X)Q_{1i}\right)$$
$$= (a)Q_0 + \sum_i a^i(a)gQ_{1i}$$
$$= (a,(a)g)Q \text{ by definition.}$$

We let $\mathcal{C} = \text{Q-BCH}_{a}(m, \ell, \delta, \Gamma), \ \tau = \left| \frac{\delta - 1}{2} \right|, \ n = m, \ k = n - \delta + 1 \ \text{and}$

$$\begin{bmatrix} \begin{pmatrix} a_{11}^1 & \dots & a_{1\ell}^1 \\ \vdots & & \vdots \\ a_{\ell 1}^1 & \dots & a_{\ell \ell}^1 \end{pmatrix}, \dots, \begin{pmatrix} a_{11}^m & \dots & a_{1\ell}^m \\ \vdots & & \vdots \\ a_{\ell 1}^m & \dots & a_{\ell \ell}^m \end{pmatrix} \end{bmatrix} \quad \longmapsto \quad (a_{11}^1, \dots, a_{\ell 1}^1, \dots, a_{11}^m, \dots, a_{\ell 1}^m).$$

Algorithm 1 Welch-Berlekamp for quasi-BCH codes

Input: a received vector $y \in \mathbb{F}_q^{m\ell}$ with at most τ errors. Output: the unique codeword within distance τ of y.

- 1: $(Z_1, \ldots, Z_m) \leftarrow \psi(y)$ where ψ is the map from Theorem 3.
- 2: Find $Q = Q_0(X) + Q_1(X)Y \in (M_{\ell \times \ell}(\mathbb{F}_{q^s})[X])[Y]$ of degree 1 such that

1.
$$(\Gamma^{i-1}, Z_i)Q = 0$$
 for all $i = 1, ..., m-1$,

- 2. $\deg Q_0 \le n \tau 1$,
- 3. $\deg Q_1 \le n \tau 1 (k 1)$.
- 3: $f \leftarrow \text{the unique root of } Q \text{ in } (M_{\ell \times \ell}(\mathbb{F}_{q^s}))[X]_{\leq k} \text{ such }$ $d\left((Z_1,\ldots,Z_m),((I_\ell)f,\ldots,(\Gamma^{m-1})f)\right) \leq \tau.$
- 4: **return** pr $((I_{\ell})f, (\Gamma)f, \dots, (\Gamma^{m-1})f)$.

Lemma 2. Let $y \in \mathbb{F}_q^{m\ell}$ be a received word containing at most τ errors. Then there exists a nonzero bivariate polynomial $Q = Q_0 + Q_1 Y \in (M_{\ell \times \ell}(\mathbb{F}_{q^s}))[X,Y]$

- 1. $(\Gamma^{i-1}, Z_i)Q = 0$ for i = 1, ..., n.
- 2. $\deg Q_0 \le n \tau 1$.
- 3. $\deg Q_1 \leq n \tau 1 (k 1)$.

Proof. We solve the problem with linear algebra over \mathbb{F}_{q^s} . We have, for each column of the solution, $n\ell$ equations and $\ell[(n-\tau)+(n-\tau-(k-1))]=\ell(n+1)$ 1) unknowns by Proposition 1.

Lemma 3. Let $Q \in (M_{\ell \times \ell}(\mathbb{F}_{q^s}))[X,Y]$ satisfying the three ditions of Lemma 2 and $f \in (M_{\ell \times \ell}(\mathbb{F}_{q^s}))[X]_{< k}$ be such $d((Z_1,\ldots,Z_m),((I_\ell)f,\ldots,(\Gamma^{m-1})f)) \leq \tau$. Then (X,f(X))Q=0. con-

Proof. The polynomial (X, f(X))Q has degree at most $n-\tau-1$. By Lemma 1 we have $(\Gamma^{i-1})((X, f(X))Q) = (\Gamma^{i-1}, (\Gamma^{i-1})f)Q = (\Gamma^{i-1}, Z_i)Q = 0$ for at least $n-\tau$ values of $i\in\{1,\ldots,n\}$. And therefore we must have (X,f(X))Q=0. \square

Proposition 4. Algorithm 1 works correctly as expected and can correct up to $\left|\frac{\delta-1}{2}\right|$ errors.

Proof. This is a direct consequence of Lemmas 2 and 3.

4 Quasi-BCH codes as interleaved codes

In this Section we prove that quasi BCH codes can be viewed as an interleaving of classical BCH codes. We fix for this Section $\Gamma \in M_{\ell \times \ell}(\mathbb{F}_{q^s})$ a primitive m-th root of unity and $\mathcal{C} = \text{Q-BCH}_q(m, \ell, \delta, \Gamma)$. We first recall the definition of interleaved codes.

Definition 9. Let C_1, \ldots, C_ℓ be error correcting codes over \mathbb{F}_q . The interleaved code C with respect to C_1, \ldots, C_ℓ is a subset of $M_{\ell \times m}(\mathbb{F}_q)$, equipped with the ℓ -bloc distance with respect to the columns, such that $c \in C$ if and only if the i-th row of c is a codeword of C_i for $i = 1, \ldots, \ell$.

Lemma 4. The matrix Γ diagonalizes over an extension of \mathbb{F}_{q^s} and its eigenvalues are all primitive m-th roots of unity.

Proof. Let $\mathbb{F}_{q^{s'}} \supseteq \mathbb{F}_{q^s}$ be the splitting field of X^m-1 . The polynomial X^m-1 is a multiple of the minimal polynomial $\mu(X)$ of Γ . Hence the egeinvalues of Γ are m-roots of unity. Let $P \in \mathrm{GL}_{\ell}(\mathbb{F}_{q^{s'}})$ be such that $P^{-1}\Gamma P$ is diagonal. Now if an eigenvalue λ_i of Γ has order d < m, then

$$P^{-1}(\Gamma^d - I_\ell)P = \begin{pmatrix} \lambda_1^d & & & \\ & \ddots & & \\ & & \lambda_i^d & \\ & & & \ddots \\ & & & \lambda_\ell^d \end{pmatrix} - I_\ell$$

is singular as its *i*-th diagonal element would be zero. Consequently $\Gamma^d - I_\ell \not\in \mathrm{GL}_\ell(\mathbb{F}_{q^{s'}})$ which is absurd. \Box

Theorem 4. The quasi-BCH code C over \mathbb{F}_q is an interleaved code of ℓ subcodes of Reed-Solomon codes over $\mathbb{F}_{q^{s'}}$ in the following sense: there exists ℓ Reed-Solomon codes C_1, \ldots, C_ℓ over \mathbb{F}_q and an isometric isomorphism from C, equipped with the ℓ -block distance, to a subcode of the interleaved code with respect to C_1, \ldots, C_ℓ .

Proof. We take the notation of the proof of Lemma 4. Recall that

$$H = \begin{pmatrix} I_{\ell} & \Gamma & \cdots & \Gamma^{m-1} \\ I_{\ell} & \Gamma^2 & \cdots & \Gamma^{2(m-1)} \\ \vdots & \vdots & & \vdots \\ I_{\ell} & \Gamma^{\delta-1} & \cdots & \Gamma^{(\delta-1)(m-1)} \end{pmatrix} \in M_{(\delta-1)\ell,m\ell}(\mathbb{F}_{q^s})$$

is a parity check matrix for C (proof of Theorem 3). By Lemma 4 we have that

$$(c_{11}, \dots, c_{1\ell}, \dots, c_{m1}, \dots, c_{m\ell}) \in \mathcal{C} \iff$$

$$\begin{pmatrix} P^{-1} & & \\ & \ddots & \\ & P^{-1} \end{pmatrix} \begin{pmatrix} I_{\ell} & \Gamma & \cdots & \Gamma^{m-1} \\ I_{\ell} & \Gamma^{2} & \cdots & \Gamma^{2(m-1)} \\ \vdots & \vdots & & \vdots \\ I_{\ell} & \Gamma^{\delta-1} & \cdots & \Gamma^{(\delta-1)(m-1)} \end{pmatrix} \begin{pmatrix} P & & \\ & \ddots & \\ & & P \end{pmatrix} \times$$

$$\begin{pmatrix} P^{-1} & & \\ & \ddots & \\ & & P^{-1} \end{pmatrix} \begin{pmatrix} c_{11} \\ \vdots \\ c_{1\ell} \\ \vdots \\ c_{ml} \\ \vdots \\ c_{m\ell} \end{pmatrix} = 0$$

and $(c_{11}, \ldots, c_{1\ell}, \ldots, c_{m1}, \ldots, c_{m\ell}) \in \mathbb{F}_q^{m\ell}$

Let

$$\begin{pmatrix} v_{11} \\ \vdots \\ v_{1\ell} \\ \vdots \\ v_{m1} \\ \vdots \\ v_{m\ell} \end{pmatrix} = \begin{pmatrix} P^{-1} \\ \vdots \\ P^{-1} \end{pmatrix} \begin{pmatrix} c_{11} \\ \vdots \\ c_{1\ell} \\ \vdots \\ c_{m1} \\ \vdots \\ c_{m\ell} \end{pmatrix}$$

$$(2)$$

Denote by σ the application defined by equation (2). Then

$$(c_{11}, \dots, c_{1\ell}, \dots, c_{m1}, \dots, c_{m\ell}) \in \mathcal{C} \iff$$

$$\sigma^{-1}(v_{11}, \dots, v_{1\ell}, \dots, v_{m1}, \dots, v_{m\ell}) \in \mathbb{F}_q^{m\ell} \text{ and for } i = 1, \dots, \ell$$

$$\begin{pmatrix} 1 & \lambda_i & \dots & \lambda_i^{m-1} \\ 1 & \lambda_i^2 & \dots & \lambda_i^{2(m-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_i^{\delta-1} & \dots & \lambda_i^{(\delta-1)(m-1)} \end{pmatrix} \begin{pmatrix} v_{1i} \\ \vdots \\ v_{mi} \end{pmatrix} = 0. \quad (3)$$

Then it is straightforward that σ is an isometric isomorphism from \mathcal{C} equipped with the ℓ -block distance and $\sigma(\mathcal{C})$, which is by equation (3) a subcode of the interleaved code with respect to ℓ subcodes of Reed-Solomon codes over \mathbb{F}_q . For $i = 1, \ldots, \ell$ take \mathcal{C}_i to be the Reed-Solomon code defined by the parity check matrix of equation (3).

Note that if the minimal polynomial of Γ has degree one: $\Gamma = X - \lambda$, then s' = s and Γ diagonalizes as λI_{ℓ} . Consequently the Reed-Solomon codes

 C_1, \ldots, C_ℓ are isomorphic, as they are defined by the same control equations in equation (3). In such a case, we can apply the result on the correction capacity for interleaved Reed-Solomon codes [SSB06, BKY07].

Corollary 1. There exists a decoding algorithm that is guaranteed to correct up to $\frac{\delta-1}{2}$ errors. In particular, if the minimal polynomial of Γ has degree 1 over \mathbb{F}_{q^s} then it can correct up to $\frac{\ell}{\ell+1}(\delta-1)$ errors with high probability.

Proof. Taking the notation of Theorem 4 and if y = c + e is a received word, one can decode $\sigma(y)$ with the decoding algorithms of $\mathcal{C}_1, \ldots, \mathcal{C}_\ell$ obtaining $c' \in \mathbb{F}_{q^{s'}}^{m\ell}$. Then $c = \sigma^{-1}(c')$.

If the minimal polynomial of Γ has degree 1, then $C_1 = C_2 = \cdots = C_\ell$ and one can apply the algorithm of [BKY07] or [SSB06].

References

- [BCGO09] T. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length of the McEliece Cryptosystem. In *Proceedings of the 2nd International Conference on Cryptology in Africa: Progress in Cryptology*, AFRICACRYPT '09, pages 77–97, Berlin, Heidelberg, 2009. Springer-Verlag.
- [BCQ12a] M. Barbier, C. Chabot, and G. Quintin. On Generalized Reed-Solomon Codes Over Commutative and Noncommutative Rings, 2012.
- [BCQ12b] M. Barbier, C. Chabot, and G. Quintin. On quasi-cyclic codes as a generalization of cyclic codes. *Finite Fields and Their Applications*, 18(5):904–919, 2012.
- [BKY07] D. Bleichenbacher, A Kiayias, and M. Yung. Decoding interleaved Reed-Solomon codes over noisy channels. *Theoretical Computer Science*, 379(3):348–360, 2007. Automata, Languages and Programming.
- [CCN10] P.-L. Cayrel, C. Chabot, and A. Necer. Quasi-cyclic codes as codes over rings of matrices. *Finite Fields and Their Applications*, 16(2):100–115, 2010.
- [Cha11] C. Chabot. Factorisation in $M_{\ell}(\mathbb{F}_q)[X]$. Construction of quasi-cyclic codes. In WCC 2011 Workshop on coding and cryptography, pages 209–218, Paris, France, apr 2011.
- [FOPT10] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Cryptanalysis of McEliece Variants with Compact Keys. In Henri Gilbert, editor, Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 279–298. Springer Berlin / Heidelberg, 2010.

- [Gra07] Markus Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de, 2007. Accessed on 2011-04-19.
- [LDW94] Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of McEliece's and Niederreiter's public-key cryptosystems. *IEEE Trans. Inform. Theory*, 40(1):271–273, January 1994.
- [LF01] K. Lally and P. Fitzpatrick. Algebraic structure of quasicyclic codes. Discrete Applied Mathematics, 111(1-2):157-175, 2001.
- [LS01] S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes .I. Finite fields. *IEEE Trans. Inform. Theory*, 47(7):2751–2760, nov 2001.
- [LS03] S. Ling and P. Solé. Good self-dual quasi-cyclic codes exist. *IEEE Trans. Inform. Theory*, 49(4):1052–1053, april 2003.
- [McE78] R. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Network Progress Report, 44:114–116, 1978.
- [MS86] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting codes. North-Holland mathematical library. North-Holland, 1986.
- [Nie86] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. *Problems of Control and Information Theory*, 15(2):159–166, 1986.
- [SSB06] G. Schmidt, V. Sidorenko, and M. Bossert. Error and Erasure Correction of Interleaved ReedSolomon Codes. In Øyvind Ytrehus, editor, Coding and Cryptography, volume 3969 of Lecture Notes in Computer Science, pages 22–35. Springer Berlin / Heidelberg, 2006.
- [UL10] V. G. Umaña and G. Leander. Practical Key Recovery Attacks On Two McEliece Variants. In Carlos Cid and Jean-Charles Faugére, editors, Proceedings of the Second International Conference on Symbolic Computation and Cryptography, pages 27–44, June 2010.