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Abstract

In this paper we investigate the structure of quasi-BCH codes. In the
first part of this paper we show that quasi-BCH codes can be derived from
Reed-Solomon codes over square matrices extending the known relation
about classical BCH and Reed-Solomon codes. This allows us to adapt
the Welch-Berlekamp algorithm to quasi-BCH codes. In the second part
of this paper we show that quasi-BCH codes can be seen as subcodes of
interleaved Reed-Solomon codes over finite fields. This provides another
approach for decoding quasi-BCH codes.

keywords: Quasi-cyclic code, quasi-BCH code, BCH code, Reed-Solomon,
interleaved code

1 Introduction

Many codes with best known minimum distances are quasi-cyclic codes or de-
rived from them [LS03, Gra07]. This family of codes is therefore very interesting.
Quasi-cyclic codes were studied and applied in the context of McEliece’s cryp-
tosystem [McE78, BCGO09] and Niederreiter’s [Nie86, LDW94]. They permit
to reduce the size of keys in opposition to Goppa codes. However, since the de-
coding of random quasi-cyclic codes is difficult, only quasi-cyclic alternant codes
were proposed for the latter cryptosystem. The high structure of alternant codes
is actually a weakness and two cryptanalysis were proposed in [FOPT10, UL10]
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1.1 Owur contributions

In this paper we investigate the structure of quasi-BCH codes. In the first
part of this paper we show that quasi-BCH codes can be derived from Reed-
Solomon codes over square matrices. It is well known that BCH codes can be
obtained from Reed-Solomon codes [MS86, Theorem 2, page 300]. We extend
this property to quasi-BCH codes which allows us to adapt the Welch-Berlekamp
algorithm to quasi-BCH codes.

Theorem 1. Let I' € Myyo(Fye) be a primitive m-th root of unity and C =
Q-BCH,(m,¢,6,T"). Then there exists a RRS code R over the ring My (Fys)
with parameters [n,n — § + 1]M€M(Fqs) and a Fy-linear, Fy-isometric embedding
Yv:C—TR.

In the second part we show that quasi-BCH codes can be seen as subcodes
of interleaved Reed-Solomon codes.

Theorem 2. The quasi-BCH code C over Fy is an interleaved code of £ sub-
codes of Reed-Solomon codes over F .. in the following sense: there exists £
Reed-Solomon codes Cy,...,Cp over Fyq and an isometric isomorphism from C,
equipped with the £-block distance, to a subcode of the interleaved code with re-
spect to Cq,...,Cy.

1.2 Related work

In [LFO01, LS01], ¢-quasi-cyclic codes of length m/ are seen as R-submodules of
R! for a certain ring R. However, in [LF01], Grébner bases are used in order
to describe polynomial generators of quasi-cyclic codes whereas in [LS01], the
authors decompose quasi-cyclic codes as direct sums of shorter linear codes over
various extensions of F, (when ged(m,q) = 1). This last work leads to an
interesting trace representation of quasi-cyclic codes. In [CCN10], the approach
is more analogous to the cyclic case. The authors consider the factorization of
X™—1 € My(F,)[X] with reversible polynomials in order to construct ¢-quasi-
cyclic codes canceled by those polynomials and called (P)-codes. This leads
to the construction of self-dual codes and codes beating known bounds. But the
factorization of univariate polynomials over a matrix ring remains difficult. In
[Chall] the author gives an improved method for particular cases of the latter
factorization problem.

2 Prerequisites

2.1 Reed-Solomon codes over rings

We recall some basic definitions of Reed-Solomon codes over rings in this section.
We let A be a ring with identity, we denote by A* the group of units of A and
by Z(A) the center of A, the commutative subring of A consisting of all the
elements of A which commutes with all the other elements of A. We denote by



A[X] the ring of polynomials over A and by A[X]. the polynomials over A of
degree at most k£ — 1.

Definition 1. Let J
f=) fiX' e AX]
i=0
be a polynomial with coefficients in A and a € A. We call left evaluation of f
at a the quantity

d
fla) = Zfiai €A
i=0

and right evaluation of f at a the quantity

d
(a)f == Zaifi €A
=0
Remark 1. For f,g € A[X] and a € A, we obviously have f(a

) =
ever a € Z(A), (f +g)(a) = f(a) +g(a), (a)(f +9) = (a)f + (a)g. Ifa
commutes with all the coefficients of g we also have (fg)(a) = f(a)g(a) and

(a)(gf) = (a)g(a)f.

Definition 2. Let 0 < k < n be two integers. Let (z1,...,x,) and v =
(vi,...,vy) be two vectors of A™ be such that x; —x; € A* and z;x; = x;x; for
all i # j and v; € A* for all i.

The left submodule of A™ generated by the vectors

(f(z1) -v1,..., flzn) - v) € A" with f e A[X] <y

is called a left generalized Reed-Solomon code (LGRS) over A with parameters
[v,2,k]a or [n, k] if there is no confusion on = and v.
The right submodule of A™ generated by the vectors

(v1-(x1)f, .. o0 () f) € A™ with f € A[X] <k

is called a right generalized Reed-Solomon code (RGRS) over A with parameters
[v,2,k]a or [n, k] if there is no confusion on x and v. The vector x is called the
support of the code. If v = (1,...,1), the codes constructed above are called left
Reed-Solomon (LRS) and right Reed-Solomon (RRS) codes.

Definition 3. Let z = (z1,...,2z,) € A". We call the Hamming weight of x
the number of nonzero coordinates.

w(@) = w(@r, .., wn) = [{i 1 25 £ 0}].

Lety = (y1,...,Yn) € A”. The Hamming distance between x and y is
dz,y) = w(x —y) = [{i: 2 # x5}

The minimum distance of any subset S C A™ is defined as

min {d(z,y) : x,y € S and z # y} .



Proposition 1. A LGRS (resp. RGRS) code is a free left (resp. right) submod-
ule of A™. A LGRS (resp. RGRS) code with parameters [n,k| has minimum
distance n — k + 1.

Proof. 1t suffices to see that the maps

AT — AT

(a1y...yan) — (a1v1,...,a,0p)
(a1y...,an) +— (v1a1,...,Vnap)
are respectively left and right isometric automorphisms of A™. O

2.2 Quasi cyclic and quasi BCH codes

Quasi cyclic codes form an important family of codes defined as follow.

Definition 4. Let T : Fy — Fy to be the left cyclic shift defined by
T(ci,¢0,...,¢n) = (c2,¢3,...,¢1).

We call ¢-quasi-cyclic code over F, of length n any code of length n over F,
stable by T*. If the context is clear we will simply say (-quasi-cyclic code.

We will focus in this paper on quasi-BCH codes which form a subfamily of
quasi-cyclic codes. They can be seen as a generalization of BCH codes in the
context of quasi-cyclic codes. For we need primitive roots of unity defined in a
extension of F,, say Fys to construct BCH codes over F,.

Proposition 2. Then there exists a primitive ¢°—1-th root of unity in My(Fgs).
Proof. The proof can be found in [BCQ12b, Proposition 16, page 911]. O

Definition 5. Let I' be a primitive m-th root of unity in My(Fg¢s) and § < m.
We define the £-quasi-BCH code of length mt, with respect to T', with designed
minimum distance §, over Fy by

Q-BCH,(m, £,6,T) =

m—1

(Crremyem) € FD™: Y (T (i) =0fori=1,...,6-1
0

i=
Note that Q-BCH,(m, (,4,T) is a quasi-cyclic code.

Definition 6. The ¢-block weight of (11, -+, T165- - Timly- - Tme) € IF;”E 18
defined to be
Block-wy(z) :== [{i : (wi1, ..., @) # 0} .

The ¢-block distance between x,y € IF;M is defined to be Block-wy(x — y).



3 Reed-Solomon codes and quasi-BCH codes

3.1 The relation between quasi-BCH and Reed-Solomon
codes

We show in this section that under certain assumptions on the support of Reed-
Solomon codes, the dual of a LRS code is a RRS code. From this fact we
show that quasi-BCH can be constructed from Reed-Solomon codes over square
matrices rings. In this Subsection we let A designate a finite ring with identity.

Definition 7. Let x = (z1,...,2,) and y = (y1,...,Yyn) be two vectors of A™.
The inner product is defined as

n
(9 = > i
1=0

Remark 2. Let S be a subset of A™. Then the set {x € A" :Vs € S, (s,z) =0}
denoted by S+ is called the right dual of S and is a right submodule of A™.
Similarly, Let S be a subset of A™. Then the set {x € A" : Vs € S, (z,s) = 0}
denoted by +S is called the left dual of S and is a left submodule of A™. Note that
forall z,y € A™ and p € A we have p (z,y) = {(px,y) and (x,y) p = (x,yu).

Definition 8. We say that a € A is a primitive m-th root of unity if a™ =1
and ¥0 <i<m,(a"—1) € A*.

Remark 3. Let z = (1,7,72%,...,7™ 1) € A™ where v is a primitive m-th root
of unity. Then a RRS or LRS code whose support is x is cyclic.

Proposition 3. Let v € A be a primitive m-th root of unity. Let x =
(1,7,9%,...,97™"1) € A™. Then the right (resp. left) dual of the LGRS (resp.
RGRS) code with parameters [x,x, k], is the RRS (resp. LRS) code with pa-
rameters [x,n — k| .

Proof. We denote respectively by £ and R the left generalized Reed-Solomon
code with parameters [z, z, k] 4 and the right Reed-Solomon code with parame-
ters [z,n — k| a.

First note that L is generated by the vectors

(1,959, ... ,’y(mfl)i) fori=1,....k
and that R is generated by the vectors
(1’71"721‘7”',7(77171)1‘) fori=0,...,n—k—1.
And we have for 0 < i+ j <n — 1 in the commutative ring Z(A)[7]
ml 1— (i)™

m—1
Z V(iﬂ)z "Yje = Z ('YHHI)Z - it =0.
; i=0

1=



Therefore, by Proposition 1 and Remark 2, L+ CRand 1R C L.
Again by Proposition 1 and Remark 2 an element z € A™ lies in £+ if and
only if

1 1 1 e 1 1 T
Loy ? v vy w2

. . = 0.
1 : : : . :
1 ,.kal 72(1@71) L ,.y(kfl)(mfl) ,}/mfl Tn

But in the commutative ring Z(A)[v] the matrix

1 1 1 . 1
1 Y 72 - 72(’“*1)

H=| | e Mo Z(A)h)
1 AF=1 A20=1) (k1) (E1)

is invertible. Therefore H is also invertible in Myy(A) and thus induces a
group automorphism of A*. If we let x = (21,...,21), TU = (Thi1,---,Tn),
we can rewrite equation (1) as

(HU)(Zi)annd(HO)(xéq):—(OU)(x(ij).

For each choice of x;; we have only one possible value for zy. Thus [£1] =
|A|"=* = |R| by Proposition 1 and therefore £+ = R. Similarly, we have
IR ="L. O

Theorem 3. Let I' € Myyo(Fys) be a primitive m-th root of unity and C =
Q-BCH,(m,£,6,T'). Then there exists a RRS code R over the ring Mpx(Fys)
with parameters [n,n — § + 1]M£X[(]Fq5) and a Fy-linear, Fy-isometric embedding
v:C—>TR.

Proof. A parity-check matrix of C is

I, T .. pm-1
I, 12 ... T2(m-1)

H=1. : : € M5—1)0,me(Fgs).
I, ™1 ... pG-Dem-1

Remark that H is a generator matrix of the LGRS code with parameters
[z, 2,0 = 1], ,(F,-) OVver the ring My (s ) and by Proposition 3 its dual is the
RRS with parameters [x,d — 1]z, ,(7,.)-

qs

Now let
TZJ:C — (ngg(Fqs))m
C11 0 ... 0 Cm1 0
(0117...,Clg,...,le,..‘,Cmg) — Sy
cie 0 0 cme 0



Obviously, ¢ is F,-linear, injective and isometric and by the above remark we
have ¢¥(C) C R. O

Theorem 3 generalizes the well-known [MS86, Theorem 2, page 300] relation
between BCH codes and Reed-Solomon codes. The above relation will allow us
to adapt the unique decoding algorithm from [BCQ12a] to quasi-BCH codes.

3.2 The Welch-Berlekamp algorithm for quasi-BCH codes

In this Subsection we let A designate a finite ring with identity. Before giving
the Welch-Berlekamp decoding algorithm, we need to define what the evaluation
of a bivariate polynomial over A is. Let Q = Y Q; ;X'Y7 € A[X,Y] be such a
polynomial. We define the evaluation of Q at (a,b) € A% to be

(a,0)Q =Y a'tQi; € A.

Be careful of the order of a, b and @; ;. This choice will be explained in the
proof of Lemma 1. Let f € A[X], we define the evaluation of Q at f to be

(X, f(X)Q =D XI(f(X))Qi; € AIX].

As in the univariate case, the evaluation maps defined above are not ring ho-
momorphisms in general.

Lemma 1. Let g € A[X], Q € A[X,Y] of degree at most 1 in'Y and a € A.
Then

(a)((X,9(X))Q) = (a, (a)9)Q.
Proof. We write

Q(X,Y) = Qo(X) + Q1 (X)Y
= Qo(X) + (Z %Xﬁ') Y.

The proof is an easy calculation:

(a)((X,9(X))Q) = (a) (QO(X) + ZXiQ(X)Q1¢>
= (a)Qo + Z a’(a)gQ

= (a, (a)g)Q by definition.



We let C = Q-BCH,(m, ¢,0,T'), 7 = Lé;zlL n=m,k=n—-30+1and
pr:(Mng(Fqs )m — F;nf

1 1 m m
au e au au e alg
1 1 m
e, — (aqq, .-, 00,500, Q)
1 1 m m
Qg ... Qg agy ... ay

Algorithm 1 Welch-Berlekamp for quasi-BCH codes

Input: a received vector y € IF;”K with at most 7 errors.
Output: the unique codeword within distance 7 of y.
1 (Z1,...,Zm) < ¢¥(y) where ¢ is the map from Theorem 3.
2: Find Q = Qo(X) + Q1(X)Y € (Myx((Fys)[X])[Y] of degree 1 such that

1. T4, Z)Q=0foralli=1,....,m—1,
2. degQop <n—71—1,
3.deg@Qy <n—7—-1—(k—1).

3: f < the wunique root of @ in (Myxe(Fy4))[X]<kr such that
d((Z1, .., Zm), (L) f,...., (") f)) < 7.
4: return pr ((Ig)f, (F)f,-.-,(rmfl)f)-

Lemma 2. Lety € F;”Z be a received word containing at most T errors. Then
there exists a nonzero bivariate polynomial Q = Qo+ Q1Y € (Myx(Fgs))[X, Y]
satisfying

1. T71,Z)Q =0 fori=1,...,n.
2. degQo <n—1—1.
3. deg@Qr <n—7—-1—(k-1).

Proof. We solve the problem with linear algebra over F,s. We have, for each
column of the solution, nf equations and £[(n —7)+ (n —7— (k= 1))] = {(n+
1) unknowns by Proposition 1. O

Lemma 3. Let Q € (Myxo(Fye))[X,Y] satisfying the three con-
ditions of Lemma 2 and f €  (Myxo(Fg<))[X]<r be such that
d((Z1,- - Zm), (L) f, -, (P71 f)) < 7. Then (X, f(X))Q = 0.

Proof. The polynomial (X, f(X))Q has degree at most n — 7 — 1. By Lemma 1
we have (T 1) ((X, f(X))Q) = (T 1 ("1 /)Q = (T, Z,)Q = 0 for at least
n—7 values of i € {1,...,n}. And therefore we must have (X, f(X))Q =0. O

Proposition 4. Algorithm 1 works correctly as expected and can correct up to

Lé;QlJ errors.

Proof. This is a direct consequence of Lemmas 2 and 3. O

m

).



4 Quasi-BCH codes as interleaved codes

In this Section we prove that quasi BCH codes can be viewed as an interleaving
of classical BCH codes. We fix for this Section I' € Myy;(FFy<) a primitive m-
th root of unity and C = Q-BCH,(m, ¢,0,T"). We first recall the definition of
interleaved codes.

Definition 9. Let Cy,...,C; be error correcting codes over Fy. The interleaved
code C with respect to Ci,...,C¢ is a subset of Myxm(Fy), equipped with the
L-bloc distance with respect to the columns, such that ¢ € C if and only if the
i-th row of ¢ is a codeword of C; fori=1,... 4.

Lemma 4. The matriz I' diagonalizes over an extension of Fys and its eigen-
values are all primitive m-th roots of unity.

Proof. Let F . 2 F¢- be the splitting field of X™ — 1. The polynomial X" —1
is a multiple of the minimal polynomial (X) of I'. Hence the egeinvalues of T’
are m-roots of unity. Let P € GLy(F./) be such that P~'T'P is diagonal. Now
if an eigenvalue \; of I" has order d < m, then

is singular as its i-th diagonal element would be zero. Consequently I'* — I, ¢
GL¢(F,. ) which is absurd. O

Theorem 4. The quasi-BCH code C over Fy is an interleaved code of ¢ sub-
codes of Reed-Solomon codes over F .. in the following sense: there exists {
Reed-Solomon codes Cy,...,Cp over Fy and an isometric isomorphism from C,
equipped with the -block distance, to a subcode of the interleaved code with re-
spect to Cq,...,Cy.

Proof. We take the notation of the proof of Lemma 4. Recall that

IZ T .. Fm—l
I, 12 ... T2(m-1)

H=1{. : : € Mis—_1ye,me(Fgs)
[, ™1 ... pG-Hm-1)



is a parity check matrix for C (proof of Theorem 3). By Lemma 4 we have that

(011,...,clg,...,cm1,...,cmg) €l <=
I, T m-1
-1
P I, 1% ... T2(m—1) P
. . .. X
1 . . .
P I, T ... pG-Dm-1) P
_ en\ T
p-1! C1¢
=0
p-1 Cm1
L Cme/ |
and (C11,.-+,C10y -+« sCmly .- sCme) € IF;M
Let
V11 C11
V1 P! Ciy
= (2)
Umi1 P_l Cm1
Ume Cme
Denote by o the application defined by equation (2). Then
(011,...,Clg,...,cml,...,cmg) €l <=
oV (V11y V1 Ul e Ume) € IF;M and fort=1,...,¢
. m—1
R SR
i i : =0. (3)
1AL L AT

Then it is straightforward that ¢ is an isometric isomorphism from C equipped
with the ¢-block distance and ¢(C), which is by equation (3) a subcode of the
interleaved code with respect to £ subcodes of Reed-Solomon codes over . For
1 =1,...,¢ take C; to be the Reed-Solomon code defined by the parity check
matrix of equation (3). O

Note that if the minimal polynomial of I" has degree one: T' = X — A,
then s’ = s and I' diagonalizes as AIy. Consequently the Reed-Solomon codes

10



Ci,...,C¢ are isomorphic, as they are defined by the same control equations in
equation (3). In such a case, we can apply the result on the correction capacity
for interleaved Reed-Solomon codes [SSB06, BKY07].

Corollary 1. There exists a decoding algorithm that is guaranteed to correct up
to 5%1 errors. In particular, if the minimal polynomial of T' has degree 1 over

Fgs then it can correct up to 6-%1(5 — 1) errors with high probability.
Proof. Taking the notation of Theorem 4 and if y = c+ e is a received word, one
can decode o(y) with the decoding algorithms of Cy,...,C, obtaining ¢’ € IE";Z{.

Then ¢ = o~ 1(¢).

If the minimal polynomial of I" has degree 1, then C; = Cy = --- = Cp and
one can apply the algorithm of [BKYO07] or [SSBO06]. O
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