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Abstract

The maximum-likelihood decoding problem is known to be NP-hard for general linear
and Reed-Solomon codes [1, 4]. In this paper, we introduce the notion of A-covered codes,
that is, codes that can be decoded through a polynomial time algorithm A whose decoding
bound is beyond the covering radius. For these codes, we show that the maximum-likelihood
decoding problem is reachable in polynomial time in the code parameters. Focusing on bi-
nary BCH codes, we were able to find several examples of A-covered codes, including two
codes for which the maximum-likelihood decoding problem can be solved in quasi-quadratic
time.
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1 Introduction

Berlekamp, McEliece and Van Tilborg showed in [1] that the maximum-likelihood decoding is
a NP-hard problem for general linear codes. Guruswami and Vardy later proved in [4] that this
problem applied to the family of Reed-Solomon codes is also NP-hard. We briefly recall below
the maximum-likelihood problem.

Definition 1.1 (Maximum-likelihood decoding problem). Let C a linear code over Fq and v

a Fq-vector in the ambient space. The maximum-likelihood decoding problem is to find the
codeword w ∈ C closest to v. Most precisely, to find w ∈ C, such as

d(w, v) = d(v, C) = min
c∈C

{d(v, c)}.

Clearly, if for a given code there exists an algorithm able to correct a number of errors at
least equal to the covering radius, then this algorithm solves the maximum-likelihood decoding
problem. We recall the covering radius definition, which is the largest distance between any
vector in ambient space and the code.

Definition 1.2 (Covering radius). Let C a linear code over Fq. Its ambient space is a Fq-vector
space V . Let v ∈ V , the covering radius R of C is given by

R = max
v∈V

{min
c∈C

d(v, c)}.

In light of Wu’s recent algorithmic advances in list decoding [8], we proceed in a comparaison
between covering radii and now achievable decoding bounds with such algorithm. This leads
us to propose the new algorithmic notion of A-covered codes for which maximum-likelihood de-
coding problem can be carried out in polynomial time, and provide some examples by focussing
the family of binary BCH codes. We also exhibit two codes for which the maximum-likelihood
decoding problem has quasi-quadratic complexity.
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2 A-covered codes

In the rest of this paper, we follow the standard notations of [2] and shall denote by R the
covering radius of a code C, and by t , ⌊d−1

2
⌋ its error correction capacity. We now recall the

definition of a perfect code.

Definition 2.1 (Perfect code). A code C with capacity t and covering radius R is called a perfect
code if and only if

R = t.

These codes are of course very interesting from a decoding point of view since each element
of their ambient spaces can be decoded. Linear perfect codes are completely classified and for
each of them, we know a decoding algorithm up to t = R. The maximum-likelihood problem is
consequently trivial for perfect codes. This very property prompts us to propose the notion of
A-covered codes in the context of list decoding. We first introduce the following definitions:

Definition 2.2 (List decoding algorithm). Let C a code and v a word in its ambient space. A
is a list decoding algorithm for C up to τA if and only if it returns all codewords w ∈ C such that
d(v, w) ≤ τA.

Definition 2.3 (Polynomial time list decoding algorithm). Let C a code, n its length, v a word
in its ambient space and A a list decoding algorithm up to τA. A is a polynomial time list
decoding algorithm if it runs in O(f(n)), where f(X) ∈ R[X].

We can now present the notion of A-covered code.

Definition 2.4 (A-covered code). Let C a code with covering radius R and A a polynomial time
list decoding algorithm which decodes C up to τA. C is an A-covered code if and only if

R ≤ τA.

Remark 2.1. Since this algorithm runs in polynomial time, the returned list is also of polyno-
mial size.

Proposition 2.1. Let C an A-covered code. The maximum-likelihood decoding problem for C,
(as given by Definition 1.1) is solvable in a time polynomial in the code parameters.

As seen before, the notion of A-covered code can be seen as a computational analogue to
perfect codes, albeit in the list decoding context (see Figure 1).

Unique decoding List decoding

Perfect code A-covered code

R = t R ≤ τA

Figure 1: Perfect code vs A-covered code
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3 Case of binary BCH codes

While still relatively recent, Wu’s list decoding algorithm [8] is already regarded as a significant
advance in the coding community. Compared to the Guruswami-Sudan algorithm [3], it exhibits
an even better complexity. Moreover, when restricted to binary BCH codes, Wu’s method al-

lows decoding up to the binary Johnson bound n
2
(1−

√

1− 2d
n
), whereas Guruswami-Sudan only

reaches the smaller general Johnson bound n(1−
√

1− d
n
), as shown in Figure 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

e/
n 

(n
or

m
al

iz
ed

 e
rr

or
 c

or
re

ct
io

n 
ca

pa
ci

ty
)

d/n (normalized minimum distance)

binary Johnson’s bound
general Johnson’s bound

unique decoding

Figure 2: General and binary Johnson’s bound

It is well known that 1-error-correcting BCH codes are perfect (these are Hamming codes)
and 2-error-correcting codes are quasi-perfect [2]. Since Wu’s method is a polynomial time list
decoding algorithm [8], it is natural to compare their covering radii and the binary Johnson
bound of other binary BCH codes. Unfortunately, classifying codes is a hard problem since it
requires to compute the covering radii which usually is not an easy task [7]. Putting together
and completing data from the literature [2], we still manage to obtain the list in Table 1. This
table includes all primitive binary BCH codes of known covering radius. The non-primitive,
Wu-covered binary BCH codes of length 17 and 23 were obtained by our own calculations.

Note that the BCH codes having 3 as their minimum distance are Hamming codes. Since
those are perfect codes, the maximum-likelihood decoding problem is trivial. We also found two
Reed-Muller codes of first order [5]. Since the dimensions of first order Reed-Muller codes are
equal to the logarithm of their lengths, naively listing all closest codewords is already a poly-
nomial time decoding algorithm. Hence, knowing that these codes are Wu-covered is of little
pratical important in solving the maximum-likelihood decoding problem, since easier polynomial
time methods are already available.

By contrast, the four codes [15, 7, 5], [17, 9, 5], [23, 12, 7] and [31, 11, 11] given in Table 1 do
not fall into the two aforementioned families and we would expect the maximum-likelihood de-
coding problem to be asymptotically hard. However, the fact that they are Wu-covered implies
that this problem is actually solvable in polynomial time only (in the code parameters).
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n k d R τ Comments

7 4 3 1 2 Hamming

15 11 3 1 1 Hamming
15 7 5 3 3 Wu-covered code
15 5 7 5 5 RM(1,4)∗

17 9 5 3 3 Wu-covered code

23 12 7 3 4 Wu-covered code

31 26 3 1 1 Hamming
31 21 5 3 2
31 16 7 5 4
31 11 11 7 7 Wu-covered code
31 6 15 11 12 RM(1,5)∗

63 57 3 1 1 Hamming
63 51 5 3 2
63 45 7 5 3
63 39 9 7 4
63 36 11 9 6

Table 1: Table of covering radius and binary Johnson bound for some binary BCH codes.

4 Quasi-quadratic list decoding of some binary BCH codes

Guruswami-Sudan’s algorithm can decode up to Johnson’s bound in polynomial time. As
McEliece remarked in [6], if we accept to decode slightly less than this bound, the algorithm
complexity is dramatically reduced. Under this relaxed constraint, Wu demonstrated in [8] that
his algorithm runs in quasi-quadratic time.

Theorem 4.1. Wu’s list decoding algorithm decodes up to

τ = ⌊ǫt+ (1− ǫ)
n− n

√

1− 2d
n

2
⌋,

with multiplicity m = ⌊ǫ−1⌋ in O(n2⌊1
ǫ
⌋4).

Consequently, binary BCH codes having binary Johnson bound strictly greater than their
covering radii, such as binary BCH [31, 6, 15] = RM(1, 5)∗ and BCH [23, 12, 7], can be decoded
in quasi-quadratic time up to, and including, their covering radii.

5 Conclusion

Working purely from an algorithmic point of view, we proposed a new set of codes, the A-covered
codes, for which we showed that the maximum-likelihood decoding problem, known as NP-hard
in the general case, is solvable in polynomial time.

The main difficulty in finding such codes lies in the computation of covering radii. How-
ever there may be quite a few of those codes as we exhibited nine binary BCH codes which
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are Wu-covered codes, of which, four constitute a new result and two can be decoded in time
quasi-quadratic in code parameters.
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